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PRICE RESPONSIVENESS AND MARKET CONDITIONS

By MICHAEL BRAULKE!

This paper develops a systematic relationship between the price responsiveness of an
optimizing agent and the conditions prevailing in its relevant markets. The result rests on a
formal comparative statics phenomenon that has a striking similarity to the classical strong
LeChatelier principle as well as to the interesting new comparative statics phenomenon
established by Edlefsen.

IT 1s WELL KNOWN that one can establish, under certain conditions, a systematic
relationship between the intensity of the reactions of an optimizing agent to
parameter changes, and the restrictiveness of the environment in which it
operates. This phenomenon, the so-called strong® LeChAtelier principle, is for-
mally merely a property of bordered Hessians, and a consequence of the fact that
by subjecting an agent to additional ‘just binding’ constraints the curvature of
the surface of its feasible set is being made progressively more concave at the
chosen optimal point. Edlefsen [3] has recently shown that essentially the same
predictions as under the LeChAtelier principle follow if the increased concavity of
the feasible set’s curvature at the extremum point is brought about by the
replacement of a given constraint by another more concave one rather than by
addition of further constraints. This type of problem may appear to be somewhat
artificial at first sight; but it arises naturally in the context of hedonic price
functions, and as Edlefsen demonstrated, its analysis leads to new and very
interesting insights into the effects of nonlinearities in the constraints on certain
aspects in the behavior of households, for example.

To see what type of predictions emerge from Edlefsen’s approach consider
Figure 1 which depicts the decision problem of two agents maximizing revenues
subject to the production possibility frontier g'(x,,x,) =0 and g*(x;,x,) =0,
respectively. Clearly, if prices are such that f(x,,x,) =c is the relevant
isorevenue line, then both agents will choose the same point (x§,x3). Now,
change one price slightly so that the isorevenue line turns a bit. It is then obvious
that the decisions of the two agents will diverge. But what is equally obvious and
more important in this context is that the quantitative response to this price
change will be comparatively less pronounced for the agent which has to observe
the more strongly curved frontier g2. This simple example demonstrates why and
how the curvature of the feasible set at the chosen optimal point influences the
intensity of certain comparative static reactions.

As has already been indicated, and is also apparent from the type of proof
Edlefsen uses, his approach is still very much in the LeChdtelier tradition: the

'T wish to thank the editors of Econometrica and two anonymous referees for very helpful
suggestions.

2The helpful distinction between the strong and the so-called weak LeChatelier principle is due to
Eichhorn and Oettli [4]. The basic reference is, of course, Samuelson [11]. For a more recent
treatment, see Silberberg [12], Kusumoto [8], Fujimoto [6], and Hatta [7].
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FIGURE 1.

feasible set is varied systematically whereas the objective function is held fixed.
One may wonder whether the reverse, i.e., varying the objective function system-
atically while keeping the feasible set fixed, would not lead to a similar
phenomenon—and indeed, it does. It is the purpose of this paper to briefly
develop this idea. Section 1 sets out with a short description of the type of static
optimization problems which are to be compared and goes on to prove the main
result in two versions. In Section 2, the stronger version will then be applied to a
simple problem in the theory of the firm. Our aim there is to establish a
systematic relationship between the price responsiveness of a producer and the
conditions prevailing in its markets.

1. THE EFFECTS OF NONLINEARITIES IN THE OBJECTIVE FUNCTION ON
THE BORDERED HESSIAN

In what follows, we compare the comparative statics of the two optimization
problems

€)) max f(x, ) subject to g(x,a)=0
and
1) mfxf(x,a) subject to  g(x,a) =0,

which differ only in that the scalar valued objective functions f(x,a) and f(x, a)

may differ. The vector of decision variables, x = (x;, ..., x,), the vector
of parameters, a = (ay, ..., q,), and the vector valued constraint function,
g=( g‘, ..., g'), are the same in both problems. Define the associated
Lagrangeans

2 L(x,\a) = f(x,a) = Ng(x,a)

and

@)  LxAe) =f(xa)-Ngxa),



PRICE RESPONSIVENESS 973

where A=(A,,...,A) and A= A eens f\,)’ denote the respective Lagrange
multipliers.

Throughout it is assumed that the two problems achieve a regular interior
maximum for any given set of parameters, i.e., we assume that at these extremum
points x* and £*, the respective first and second order sufficient conditions hold.
This allows us to conclude immediately that the associated bordered Hessians

3  H(xAa)= [ Ju :;gx" _Og"‘}

and

’

(3/) ﬁ(x,?:,a)=[fxx*}‘gxx ‘gx:|
~ & 0

are regular at the points (x*,A* a) and (#*,A*, a), respectively, and that the
submatrices 4 and 4 of their conformably partitioned inverses

@ H_'(x*,}\*,a)=[‘; %}

and
@) BN A%e) = {AA B/ ]

are negative semidefinite.> We state the structure of these bordered Hessians and
their inverses rather explicitly since the result below is expressed in terms of the
relationship between these inverse bordered Hessians which play, as is well
known, a crucial réle in the comparative static analysis.

Bordered Hessians have not been popular because most results in the compar-
ative statics of optimization problems can be obtained by more powerful and
direct methods. For instance, in the conjugate pairs case the typical signing of
the response to a conjugate parameter can be done most easily by using the weak
LeChadtelier principle. And even more complex results such as reciprocity rela-
tions, the negative semidefiniteness of the substitution matrix, or even statements
under the strong LeChatelier principle regarding the intensity of responses in a
more or less restricted environment follow almost trivially when the gain function
approach is used.* However, these more direct methods appear to break down
when the conjugate pairs property is not available or—as in our case—when
there is no guarantee that the target functions which reflect a particular environ-
ment assume identical values at the initial optimal point. We, therefore, have
little choice but to proceed along the traditional, more indirect route, and
investigate bordered Hessians.

3See Debreu [2] or Quirk [10, pp. 23-24] who gives a simple proof.
4For examples see Silberberg [12] or Hatta [7].
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So far, we have not specified in what sense the objective function f(x a) is to
differ from the objective function f(x ). In essence, we assume that a level curve
of the objective function f(x «) is tangent to the level curve of the objective
function f(x,a) at the point x*, but bends away from this tangent hyperplane
more quickly than the latter. More precisely, we investigate the effect of letting
f(x a) possess the same gradient as f(x, «) at the point x*, but be more concave.
This is the reverse analogue to the case covered by Edlefsen or the classical
strong LeChAtelier principle. The result then is: (i) if the comparability condition

®) fo(x*,0) = fo(x* @)

holds, problems (1) and (1) lead to the same decision, i.e., £* = x*. Furthermore,
A* =% (ii) Given the comparability condition (5), if

©6) W(fon(x*,0) = fur(x*,0))h =0 forall h=(h,...,h)

holds, the difference H ~'(x*,A* a) — H ~'(£*,A*, a) will be negative semidefi-
nite. (iii) Given the comparability condition (5), if the weaker condition

@) h’(fxx(x*,a) — fex(x*a))h=0  forall & such that g (x*,a)h=0

holds, then still the difference 4 — 4 will be negative semidefinite.

ProoF: Compare the first order conditions associated with (1) and (1), which
are

®) fi(x*,a) = A*¥g, (x*,0) =0, g(x*,a)=
and
@®) fu(g*0) —Avg (£%,0) =0,  g(#*a)=0,

respectively, and observe that any solution (x*,A*) solving (8) solves (in view of
(5)) likewise (8’). Thus we conclude that X* = x* and A* = A*, proving (i). In
particular, the bordered Hessians and their inverses are to be evaluated at the
same point (x*,A*, a). Note that A (X%, A, a) can accordingly be expressed as

9 H(x*,}\*,a) = H(x*A*,a) + S,
where S has the simple structure

(10) s={€ 8} with D =f. (x* ) — fur (x* ).

Using (9), we have HH ~'H = H +2S + SH ~'S and HHE 'H=H+S. Sub-
tracting these two equat1ons and multlplymg the result from both sides by H ',
gives H-'— H-'=H"'SH~'+ H~'SH™'SH~". Set v’ = (u',w'), where u

and w are n- and r-vectors, respectively, and multiply the last equation from both
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sides with this vector. Multiplying through and using (4), (4'), and (10) gives
(1 o'(H ' = ﬁ_')v = (u’/f +w' B )D(/fu + ﬁ’w)
+ ([wA +wB]D)A(D[Au + B'w)]).

Now, the second term on the right-hand side is clearly nonpositive, since 4
must be negative semidefinite by the second order sufficient conditions. If also D
is unconditionally negative semidefinite, then the entire right-hand side is non-
positive. Thus, in view of (6), (ii) is proven. Let w = 0 and reconsider (11), which,
using (4) and (4) again, becomes

(12)  w(A - Ayu= (wA)D(Au) + (W' AD )4 (DAu).

The second term on the right-hand side is clearly nonpositive. In order to
establish the nonpositivity of the entire right-hand side of (12) and thus to prove
(iii), we must show that the n-vector » = Au occurring in the first term on the
right-hand side has the property that is required in (7). Observe that, when
multiplying out the equation HA '=1 in partitioned form using (3) and (4),
one of the resulting four equations is ng 0. Hence gXAu = 0 holds, implying
that the vector # = Au indeed possesses the required property g s = 0. This
establishes (iii) and completes the proof.

Condition (7) is much weaker than condition (6); for it requires the relative
concavity of f(x a) to f(x,a) to hold only for those directions around x* that are
feasible given the constraints, while (6) requires this to hold for all directions.
However, unless the problem under consideration is of an exceedingly simple
structure, the validity of condition (7) will in general be rather difficult to check
if (6) is violated.

2. AN APPLICATION TO THE THEORY OF THE FIRM

Edlefsen’s main result on the systematic change in the substitution matrix of a
household when facing parametric or hedonic prices [3, Theorem 3.1] can be
deduced by considering a household that minimizes expenditures, given a certain
prescribed utility level, and using (iii) above. On this basis one could likewise
show that the compensated demand of a household entitled to progressive
rebates on its consumer goods purchases is more sensitive to a change in a
conjugate parameter, such as an indirect tax or a subsidy on a commodity, than
a household without rebates.

In order to investigate a problem which cannot be solved that easily with
Edlefsen’s approach we analyze here in more detail the comparative static
reactions of two producers who have identical technological and other con-
straints, but face different market conditions. It is a well known fact that, e.g., a
profit maximizing monopolist reacts qualitatively much the same way to a price
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change in a competitive factor market as a producer facing competitive condi-
tions in his output market. But while the direction of these reactions to such price
changes are identical, the intensity in general differs. As a matter of fact, it can
be shown that, under fairly reasonable assumptions, the monopolist responds less
intensely to a price change in a factor market than a perfect competitor. One
might be inclined to think that it is essentially the elasticity of demand or supply
in the various relevant output or input markets which determines the intensity of
the response. This is not correct: it is the speed with which marginal revenue or
marginal expenditure in the various markets changes, rather than the size of the
demand or supply elasticities in these markets, which is responsible for a more or
less intense reaction to a change in a conjugate parameter. To put it more
precisely and generally, we intend to show that the more rapidly marginal
revenue declines or marginal expenditure rises in at least one output or input
market, the less intensely a profit maximizing producer tends to react in any
market to a change in prices, indirect taxes, shifts in demand or supply, or any
other conjugate parameter. This finding allows us to portray the general demand
and supply behavior of a producer, with monopolistic or monopsonistic power in
a certain market j, as being bracketed between two extremes, namely behavior
under perfect competition, and behavior under quantity rationing in market j.

Letting x = (x,, . . ., x,)’ denote quantities, we use the common convention
that outputs are positive, inputs negative. Let p,, the (positive) price prevailing in
market i, be a function of x; alone’ and define z'(x;) = x;p;,(x;) as the gross
revenue or, if negative, the gross expenditure in market i. Consider then a
producer solving the profit maximization problem

(13) max B'z(x)  subjectto h(x)—y=0,

where z(x) = (z!(x)), . .., z"(x,)) is the vector of gross revenues and expendi-
tures, 8= (B, ..., B,) is a vector of strictly positive shift parameters (which
may accommodate taxes, subsidies, exchange rates etc.), such that the product
B’z(x) is net profits.

Writing the constraints in the inequality form h(x)—y=0 where h(x)
= (h'(x),...,h"(x)) and y=(yy, ..., 7,), one may generally interpret hi(x)
as the use of resource j, which must not exceed the available amount y;. More
specifically, if the kth constraint is a production function, the associated v, can
be viewed as an additive technological shift parameter. We will assume, inciden-
tally, that all inactive constraints have already been deleted so that at the
optimum we have h(x*) — y=0.

SLetting the prices p, be functions of x; alone rather than of the entire vector x precludes the
possibility of allowing for interconnected markets and appears therefore to be unwarranted. However,
dropping this assumption would substantially complicate the comparative static analysis below and
lead to results that appear to resist a useful economic interpretation. This will become more apparent
when viewing (14), (15), and (16) below and considering that without this assumption the relevant
matrices z, and B’z,, would cease to be diagonal.
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Writing L = B’z(x) — A (h(x) — v) for the associated Lagrangean, the com-
plete comparative static system for this producer is given by

xE x;k =__H—l *}\* [Zx(x*) 0]
[}cg A;} S

Using the partitioning proposed in (4), the more promising parts of these
comparative static reactions are

(14.1)  xf= —Az(x*),
(142) X=-C.
Consider now a second producer solving
(13) max B'Z(x) subjectto h(x)—y =0,

and the associated comparative static system, the relevant parts of which, in
obvious notation, are

(14.1)  #F = — Az, (%%,
(142) Ar=-C.

This second producer faces the same constraints as the first producer, but is
exposed to different market conditions, reflected by a different profit function, or
more precisely, by different gross revenue and expenditure functions.

Assume now that marginal profits are identical at the point x* so that

(15) B'Z.(x*) = B’z (x*),

and that the difference between the two profit functions is simply that the profit
function of the second producer is more concave than that of the first producer
at this point, i.e.

(16)  W(B'2.(x*) = B’z (x*))h=0  forall h.

Since z, and likewise £, are diagonal by assumption, (15) is tantamount to
requiring 07(x*)/0x;, = 0z'(x*)/dx; for i=1,..., n. Therefore marginal
(gross) revenues and expenditures in all markets have to be identical for both
producers at the point x*. Since also 8%, and B’z,, are diagonal matrices, (16)
requires, in effect, 3%2/(x*)/dx? = 0% '(x*)/0x? for all i=1, ..., n. Thus, for
the second producer, in any market marginal gross revenue has to fall or
marginal expenditure rise at least as rapidly as for the first producer.
Now, (15) is nothing but the comparability condition (5). Hence, by (i),

(17) £*¥(B,y)=x*(B,y) and A*(B,y)=A*(B,v).

This says that both producers make the same decision and face identical shadow
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prices. Since (16) is in turn equivalent to condition (6), we conclude furthermore
on the basis of (ii) above that the difference H ~'(x*,A*, B8,v) — _'()2* A, B,
v) is negative semidefinite. Consequently

(18) A—Aand C— Care negative semidefinite.

Using (14), (14, (15), and (17) we have £ — xB (4 — A)z,(x*) and & — A*
= C — C. In view of (18), these imply in particular®

ax* dx*
(19.1) a—B‘ = '-a—B— (l = 1, . s n)
and
(19.2) W =1 )
. _—= 5 J=L...,r)
ayj ayj

(19.1) shows that, the steeper the decline in marginal revenue or the rise in
marginal expenditure in at least one market, the less intense is the reaction of a
profit maximizing producer in any market to a change in a conjugate parameter.
This phenomenon is entirely plausible. Consider for example the simple case of a
producer facing competitive conditions in all markets and compare his behavior
with that of a producer in exactly the same situation except that marginal
expenditure in market j does not stay constant but rises with increasing demand.
He is thus a monopsonist in this factor market. Let the price of an output i rise.
For both producers, this provides an incentive to expand production of output i.
But the incentive for the second producer erodes more quickly, since in the
process of expanding output, the use of factor j normally’ also expands and thus
becomes more expensive, while for the first producer its price stays the same.
Let us stick to this simple setup one more moment. When starting from
perfectly competitive conditions in factor market j and allowing these market
conditions to become increasingly more ‘monopsonistic’ so that the second
derivative of the expenditure function z/ (x;) goes from first zero to (minus)
infinity, one may establish on the basis of (11) a chain of increasingly weaker
reactions dx*/908; (i=1,...,n) the end of which simulates the situation of
quantity rationing in factor market j. It is in this sense that the demand and
supply behavior of an ordinary monopsonist in factor market j or, more pre-
cisely, his immediate reactions dx*/98; (i =1, ..., n), can be considered to be
bracketed between those of a comparable producer facing perfect competition in

SNote that dx}*/9f8; = —a; 0z'(x}*)/dx; where a;; denotes the ith diagonal element of A which
must be negative semidefinite. The reaction dx}*/9; has therefore the same sign as dz°/dx;. Since
that applies also for the reaction dx#*/98,, both reactions will consequently have the same sign and
differ merely in magnitude.

7 Alternatively, let factor j be inferior with respect to output i in the sense that demand for that
factor falls when the price of output i rises (compare Bear [1] or Ferguson [5] for a symmetric but
slightly different definition of an inferior input). In this case the marginal expenditure saved because
of the reduction in demand for that factor is absolutely smaller for the second producer which again
leads to the conclusion that his output expansion will be comparatively less pronounced.
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market j on the one hand and those of a producer facing quantity rationing in
this market on the other.

(19.2) also has an interesting interpretation. In view of the inequality con-
straints considered here, the Lagrange multipliers must be nonnegative. One
would furthermore expect that these shadow prices A* and the allocations of the
respective resources v; tend to move in opposite directions. Indeed, it can be
shown that, under falrly general conditions, A* / y,=0(=1L..., r).8 With
this case in mind, and interpreting the shadow prices as a measure of the
incentive to overcome a given resource constraint by a marginal step, (19.2) says
that the quicker marginal revenue in a product market falls or marginal expendi-
ture in a factor market rises, the more rapidly does the incentive to overcome any
resource bottleneck fade away. Or, if v; has the interpretation of a technological
shift parameter, then (19.2) says that a monopolist’s or a monopsonist’s willing-
ness to pay for a technological shift declines more rapidly than that of a
comparable perfect competitor and less rapidly than that of a producer rationed
in the respective market. (19.2) thus points at just another way in which
monopolistic or monopsonistic power (and even more so quantity rationing in
any market) tends to dampen the level of activity of a producer.

3. SUMMARY

Edlefsen [3] has shown that a property very similar to the strong LeChAtelier
principle can be established when altering the feasible set of an optimizing agent
by suitably replacing existing constraints rather than adding new ones. Here it
was demonstrated that essentially the same phenomenon occurs when altering
the objective function in a systematic, manner rather than the feasible set. The
result obtained is general enough to imply Edlefsen’s result on the substitution
matrix for a household choosing between quantity and quality when facing
hedonic prices. We have also applied it to the theory of the firm: it was
demonstrated that a systematic relationship exists between the intensity of the
reactions of a producer to changes in a conjugate parameter and the conditions
prevailing in his markets. To put the conclusion more pointedly, our analysis
suggests that one may view behavior under monopoly or monopsony as brack-
eted by behavior under competition on the one side and behavior under
rationing on the other.

Universitit Konstanz, West Germany

Manuscript received February, 1982; revision received June, 1982.
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